8 research outputs found

    Simply InGEN(E)ious! How Creative DNA Modeling Can Enrich Classic Hands-On Experimentation

    Get PDF
    Innovative 21st-century methods for teaching biology should provide both content knowledge and diverse scientific competencies. The Curriculum Guidelines of the American Society for Microbiology highlight the importance of developing scientific thinking skills, which include the abilities to formulate hypotheses, to communicate fundamental concepts effectively, and to analyze and interpret experimental results. Additionally, contemporary science education should enhance creativity and collaboration as key student assets in its bid to overcome negative perceptions and learning difficulties. In recent years, the expanding movement for so-called “STEAM” approaches (science, technology, engineering, arts, and math) has increased in STEM curricula. The movement seeks to integrate the arts into science classes to transfer enthusiasm, support individual self-sufficiency, and encourage creative solutions. To meet all these demands, we developed an inquiry-based approach that actively engages students in hands- and minds-on activities on the topic of “decoding the DNA structure” in an outreach laboratory. Since teaching abstract molecular phenomena is a challenge in biology classes, we combine classical experimental tasks (DNA isolation, gel electrophoresis) with creative modeling. The experiments are linked by the modeling phase: immersed in the story of the discovery of the DNA structure, our participants independently construct a DNA model from a box filled with inexpensive craft supplies (e.g., glue, straws, pipe cleaners, beads). After initial pilot testing, the implementation of our approach clearly produced short- and mid-term learning effects among the students, providing a successful example of a STEAM-based approach in a laboratory setting

    Comparing the Use of Two Different Model Approaches on Students’ Understanding of DNA Models

    Get PDF
    As effective methods to foster students’ understanding of scientific models in science education are needed, increased reflection on thinking about models is regarded as a relevant competence associated with scientific literacy. Our study focuses on the influence of model-based approaches (modeling vs. model viewing) in an out-of-school laboratory module on the students’ understanding of scientific models. A mixed method design examines three subsections of the construct: (1) students’ reasoning about multiple models in science, (2) students’ understanding of models as exact replicas, and (3) students’ understanding of the changing nature of models. There were 293 ninth graders from Bavarian grammar schools that participated in our hands-on module using creative model-based tasks. An open-ended test item evaluated the students’ understanding of “multiple models” (MM). We defined five categories with a majority of students arguing that the individuality of DNA structure leads to various DNA models (modelers = 36.3%, model viewers = 41.1%). Additionally, when applying two subscales of the quantitative instrument Students’ Understanding of Models in Science (SUMS) at three testing points (before, after, and delayed-after participation), a short- and mid-term decrease for the subscale “models as exact replicas” (ER) appeared, while mean scores increased short- and mid-term for the subscale “the changing nature of models” (CNM). Despite the lack of differences between the two approaches, a positive impact of model-based learning on students’ understanding of scientific models was observed
    corecore